Riemannian regular $\sigma$-manifolds
نویسندگان
چکیده
منابع مشابه
A Geometry Preserving Kernel over Riemannian Manifolds
Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...
متن کاملSweeping process by prox-regular sets in Riemannian Hilbert manifolds
— In this paper, we deal with sweeping processes on (possibly infinitedimensional) Riemannian Hilbert manifolds. We extend the useful notions (proximal normal cone, prox-regularity) already defined in the setting of a Hilbert space to the framework of such manifolds. Especially we introduce the concept of local prox-regularity of a closed subset in accordance with the geometrical features of th...
متن کاملContinuous maximal regularity on uniformly regular Riemannian manifolds
We establish continuous maximal regularity results for parabolic differential operators acting on sections of tensor bundles on uniformly regular Riemannian manifolds M. As an application, we show that solutions to the Yamabe flow on M instantaneously regularize and become real analytic in space and time. The regularity result is obtained by introducing a family of parameter-dependent diffeomor...
متن کاملHeterogeneous Riemannian Manifolds
We define a Riemannian metric g on a manifold M to be heterogeneous if no two distinct points of M have isometric neighborhoods. Intuitively, a heterogeneous metric is as far as possible from being homogeneous. Heterogeneity can be reformulated in terms of a multijet transversality condition so that by an application of the standard transversality theorems, the genericity of heterogeneous metri...
متن کاملFlowers on Riemannian manifolds
In this paper we will present two upper bounds for the length of a smallest “flower-shaped” geodesic net in terms of the volume and the diameter of a manifold. Minimal geodesic nets are critical points of the length functional on the space of graphs immersed into a Riemannian manifold. Let Mn be a closed Riemannian manifold of dimension n. We prove that there exists a minimal geodesic net that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Czechoslovak Mathematical Journal
سال: 1994
ISSN: 0011-4642,1572-9141
DOI: 10.21136/cmj.1994.128440